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We develop in detail a formalism �as a sequel to the work of T. Champel and S. Florens, Phys. Rev. B 75,
245326 �2007�� that is well suited for treating quantum problems involving slowly varying potentials at high
magnetic fields in two-dimensional electron gases. For an arbitrary smooth potential we show that electronic
Green’s function is fully determined by closed recursive expressions that take the form of a high magnetic-field
expansion in powers of the magnetic length lB. For illustration we determine entirely Green’s function at order
lB
3 , which is then used to obtain quantum expressions for the local charge and current electronic densities at

equilibrium. Such results are valid at high but finite magnetic fields and for arbitrary temperatures, as they take
into account Landau level mixing processes and wave-function broadening. We also check the accuracy of our
general functionals against the exact solution of a one-dimensional parabolic confining potential, demonstrat-
ing the controlled character of the theory to get equilibrium properties. Finally, we show that transport in high
magnetic fields can be described hydrodynamically by a local equilibrium regime and that dissipation mecha-
nisms and quantum tunneling processes are intrinsically included at the microscopic level in our high
magnetic-field theory. We calculate microscopic expressions for the local conductivity tensor, which possesses
both transverse and longitudinal components, providing a microscopic basis for the understanding of dissipa-
tive features in quantum Hall systems.
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I. INTRODUCTION

A. General motivation

Almost 30 years after the discovery of the quantum Hall
effect,1,2 two-dimensional electron gases under magnetic
fields continue to attract a considerable interest both experi-
mentally and theoretically and have revealed a rich world of
surprising physics. Newly discovered features concern, e.g.,
the zero resistance states under microwave illumination3 and
the peculiar Landau-level quantization in graphene.4 Con-
cerning the integer quantum Hall effect �IQHE� itself, direct
local imaging techniques5–8 have revealed new electron-
electron correlation phenomena and allowed a finer under-
standing of the microscopic ingredients at work.

On the theoretical side, the quantization of the Hall resis-
tance observed in the IQHE relies on the understanding of
the quantum motion of charged particles in a two-
dimensional disordered electrostatic landscape in the pres-
ence of a strong perpendicular magnetic field.9–18 As the
main effects of the electron-electron interaction can be taken
into account in the integer regime at the single-particle level,
using a Hartree approach to screening,19,20 the calculation of
equilibrium properties, such as the local electronic density
and the distribution of permanent currents throughout the
sample, can be carried out from a one-particle random
Schrödinger equation. The precise resolution of this problem
constitutes the first and important step toward a microscopic
description that underlies the more complex nonequilibrium
phenomena of the quantum Hall effect in its generality.

Despite the overall good understanding gained after sev-
eral decades of research,10,12–25 a simple and general micro-
scopic approach for the physics of quantum Hall systems is

surprisingly still lacking. Computer-based simulations have
been proposed,26,27 but rely on heavy numerics in the case of
two-dimensional disordered potentials, and are not well
suited for the computation of out-of-equilibrium properties.
Even in the linear-response regime, they are certainly unable
to address minute aspects such as the tiny deviations to the
Hall resistance quantization. Analytical approaches are better
adapted to formulate out-of-equilibrium calculations but face
the need to reliably handle in a self-consistent screening
theory both the formation of Landau energy levels at quan-
tizing magnetic fields and the complexity of the random po-
tential.

At present, the theory of the integer quantum Hall effect
relies on two main cornerstones, which do await a unified
description. On the one hand, equilibrium density profiles are
generally computed within a semiclassical Thomas-Fermi
approach,19,20,28,29 leading to a description of the quantum
Hall liquid in terms of compressible and incompressible re-
gions. These calculations have however proved to be only
qualitatively accurate30 and fail at low temperature, where
quantum broadening due to the electronic wave function be-
comes important. Transport properties are on the other hand
conveniently formulated in the Büttiker edge state
formalism,19,24,28 which nevertheless needs input from more
microscopic calculations of the bulk properties. This scatter-
ing theory becomes also very cumbersome to describe dissi-
pative features of macroscopic samples. An alternative suc-
cessful semiclassical approach to transport29–33 assumes local
Ohm’s law at a phenomenological level. A simple and con-
trolled quantum approach to both equilibrium and out-of-
equilibrium properties of quantum Hall fluids is thus clearly
needed.
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B. Review of the high magnetic-field approaches: The
semiclassical limit

A popular approach to the IQHE is the high magnetic-
field limit, in which case the center-of-mass motion of the
electron becomes essentially classical. A quantum descrip-
tion is only kept for the orbital effects associated with the
Landau-level formation.10,12–15 The basic physical idea be-
hind these works is that the effective potential seen by the
electrons in quantum Hall systems is quite smooth at the
scale of the magnetic length lB=��c / �e�B �here � is Planck’s
constant divided by 2�, c is the velocity of light, B is the
magnetic-field strength, and �e� is the absolute value of the
electric charge�. This permits a simple mathematical treat-
ment of the Schrödinger equation using as a small parameter
the ratio of the magnetic length to the typical correlation
length of the random potential. This point of view is cer-
tainly vindicated experimentally by the fact that the impuri-
ties in semiconducting heterostructures are located outside
the two-dimensional layer of conduction electrons, while lB
is an extremely small length scale which falls below 10 nm
for magnetic fields above 5 T. It is tempting to believe that
all aspects of the quantum Hall effect should be captured
accurately in this limit.

While the idea is certainly not new, it is interesting to note
that no fully quantum treatment of the high-field regime is
currently available, which is the issue we want to address in
this paper. Focusing first on the semiclassical corrections to
the B=� limit, it is known that systematic calculations are
quite cumbersome, even at the lowest orders in the lB expan-
sion, due to the Landau level mixing,13,34 so that new tools
are certainly needed. A first technical step in this direction
was made by two of us in a recent publication35 by introduc-
ing well-suited coherent state Green’s functions. These so-
called vortex states with the quantum numbers �= �m ,R�,
where m is the Landau-level index and R the position of a
localized vortexlike wave function, form an overcomplete
basis of eigenfunctions with no preferred symmetry, in con-
trast to the widely used translation-invariant Landau states or
the rotation-invariant circular states. They thus permit a great
adaptability to the spatial variations of the local electric
fields, coming from either random impurity donors, confine-
ment potentials due to external gates, or macroscopic voltage
drops. This formulation also allows one to classify Landau
level mixing processes in a simple and natural manner, an
important point for the investigation of quantum transport
properties, as the matrix elements of the current density nec-
essarily relate adjacent Landau levels.

Our first implementation of this technique35 has demon-
strated, not surprisingly, that the usual semiclassical ap-
proach to the quantum Hall effect �limited to spectral prop-
erties� could be easily recovered by a straightforward
expansion of vortex Green’s function in powers of the mag-
netic length. In this view, the vortex state coordinate R can
be identified in the limit lB→0 with the slow classical center-
of-mass drifting motion, which completely decouples from
the faster cyclotron motion.

C. Toward a unified quantum description at high magnetic
field

The present paper has two aims. First, we want to provide
an accurate quantum treatment of the local equilibrium prop-

erties of quantum Hall systems. For this purpose, we offer
simple functionals of the arbitrary local electrostatic poten-
tial that describe both the local charge and current densities.
These results may have important bearings for microscopic
modelizations of real devices based on Hartree-Fock or more
refined local density approximation �LDA� calculations, as
they avoid the numerical costs in solving the random
Schrödinger equation in a magnetic field. The knowledge of
the current density functional can be used in a second step to
obtain out of equilibrium transport equations, which take a
simple hydrodynamic form at high magnetic fields. This step
allows us to derive microscopically a simple and local ex-
pression for the conductivity tensor. We show that in contrast
to the well-known drift contribution to the transverse Hall
conductivity,36 dissipative longitudinal components first ap-
pear at order lB

2 . These contributions had not been obtained
previously in the literature to our knowledge. This method
also allows one in principle to derive microscopically the
dominant nonlocal corrections to local Ohm’s law. A general
understanding of the dissipative features in the integer re-
gime seems now possible at the microscopic level.

D. Organization of the paper

Because the paper involves several technical develop-
ments, we hereafter guide the reader through the main results
obtained. Section II is used to introduce vortex Green’s func-
tions and reformulate in a more systematic manner the re-
sults obtained in Ref. 35. Two important formulas are found
that determine completely Green’s functions both in the vor-
tex coordinates �Eq. �26�� and in the electronic coordinates
�Eq. �44��. These are the starting point for the computation of
all physical observables. The local electronic charge density
is thus derived up to order lB

2 in Sec. III and is given by
formulas �50�, �56�, and �58�. We emphasize beforehand that
all these expressions take into account quantum smearing
effects from the wave function and extend the semiclassical
results �also derived in this section� to much lower tempera-
tures. Similarly, the �equilibrium� local electronic current
density is computed to the same order in Sec. IV and is given
by Eqs. �72�, �75�, �C6�, �C8�, and �C10�. Again, the semi-
classical current density can be obtained from these expres-
sions and is given by Eqs. �73�, �76�, and �C11�–�C14�. We
then provide in Sec. V two important checks of our theory
against an exactly solvable model of a one-dimensional para-
bolic confinement potential. First, the analytic semiclassical
formulas for the local observables obtained in Secs. III and
IV are compared with the strict expansion in lB from the
exact model and shown to match precisely, strengthening the
mathematical foundation of our theory. Second, a more quan-
titative comparison is made between the quantum expres-
sions obtained for the electronic density in Sec. III and the
exact results at finite values of the magnetic length. This
shows that the expansion proposed here is converging quite
rapidly, even for a confining potential that is not exceedingly
smooth. Because the vortex states do not favor any special
symmetric situation, similar quantitative results should be
obtained for an arbitrary two-dimensional smooth disordered
potential. In the limit of zero temperature, this comparison
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also shows the need for a resummation of the quantum ex-
pressions to infinite order in lB, modifying both the vortex
wave functions and energies and allowing a possible connec-
tion to the edge state picture. Finally, Sec. VI investigates
nonequilibrium properties in the integer quantum Hall re-
gime and provides a microscopic derivation of the local con-
ductivity tensor in the semiclassical regime �formula �108��.
The origin of dissipation is discussed, and a general conclu-
sion showing future directions of our work closes the paper.
Some extra technical details are given in several appendixes.

II. HIGH FIELD EXPANSION WITHIN THE VORTEX
STATES REPRESENTATION

A. Vortex states

The vortex states under which our quantum high
magnetic-field theory reposes are eigenstates of the free
Hamiltonian,

H0 =
1

2m��− i��r −
e

c
A�r��2

, �1�

describing a single electron of effective mass m� and of
charge e=−�e� confined in a �xy� two-dimensional plane un-
der a perpendicular magnetic field B �pointing in the z direc-
tion�. In the symmetrical gauge,

A�r� =
�c

�e�
1

2lB
2 �− y

x
� ,

the vortex wave functions, with quantum number �= �m ,R�,
are written in terms of the electronic variables r as11,35

�m,R�r� =
1

�2�m!lB
� x − X + i�y − Y�

�2lB
�m

� exp	−
�x − X�2 + �y − Y�2 + 2i�yX − xY�

4lB
2 
 .

�2�

The associated energy levels read

Em,R = �m + 1/2���c � Em, �3�

where �c= �e�B /m�c is the cylclotron pulsation. The energy
levels are independent of the position R, and their quantiza-
tion is uniquely related to the �topological� quantization of
the circulation of any paths enclosing the position r=R
which corresponds to a phase singularity of the wave func-
tion �m,R�r� �note that this wave function vanishes only at
the point r=R where its phase is ill-defined: it describes a
vortex�.

As is clear from Eq. �3� the Landau energy levels are
highly degenerate, so that there is a great freedom in the
choice of a basis of states. However, a judicious choice for
the set of quantum numbers appears essential when consid-
ering perturbations that lift this huge energy degeneracy. A
peculiarity of the vortex states, which could appear at the
first glance as a drawback, is that they are nonorthogonal
with respect to the degeneracy quantum number R. Indeed,
the overlap between two vortex states is given by

��1��2 = 	m1,m2
�R1�R2 , �4�

�R1�R2 = exp	−
�R1 − R2�2 − 2iẑ · �R1 � R2�

4lB
2 
 , �5�

where ẑ is the unit vector along the perpendicular magnetic
field.

On the contrary, the other well-known eigenstates of H0,
the Landau and circular basis states, which are commonly
used for quantum calculations, are orthogonal. But since they
are highly symmetric states, they lead to unsolved technical
difficulties when considering a random potential in high
magnetic fields, which mixes in a very complicated way the
two quantum numbers. The vortex basis, which has no in-
trinsic symmetry �the nonorthogonality of the vortex states
arises from this property�, allows one to overcome this draw-
back. The possibility35 to work with this basis is, in fact,
provided by the coherent character of the vortex position
degree of freedom �the algebra obeyed by the degeneracy
quantum number R is that of coherent states�.

B. Dyson equation in the vortex representation

From now on and throughout the paper, we consider that
the Hamiltonian contains in addition to the kinetic part H0 a
potential-energy term V�r�, which we let completely un-
specified

H = H0 + V�x,y� . �6�

The Dyson equation written within the vortex representation
��= �m ,R then takes the form35

�� − Em1

 i	�G�1;�2

R,A ��� = ��1��2 + �
�3

V�1;�3
G�3;�2

R,A ��� ,

�7�

where G�1;�2

R,A ��� are retarded and advanced Green’s functions
connecting two vortex states �1 and �2 �in the energy repre-
sentation�. The sum over the vortex quantum numbers � ap-
pearing into the Dyson equation stands for

�
�

= �
m=0

+� � dR

2�lB
2 . �8�

The matrix elements of the potential V�r� in the vortex basis
are given by

V�1;�2
=� d2rV�r��m1,R1

� �r��m2,R2
�r� = �R1�R2v�1;�2

�9�

where, for a practical purpose which will appear obvious in
the following, the overlap between the two vortex states has
been extracted. Similarly for retarded and advanced Green’s
function, we extract the vortex overlap,

G�1;�2

R,A ��� = �R1�R2g�1;�2

R,A , �10�

where the dependence on frequency � is not explicited any-
more in order not to burden the expressions. Substituting
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expressions �9� and �10� in Eq. �7�, we get a Dyson equation
for the function g�1;�2

R,A which reads

�� − Em1

 i	�g�1;�2

R,A = 	m1,m2
+ �

�3

v�1;�3
g�3;�2

R,A

�
�R1�R3�R3�R2

�R1�R2
, �11�

where

�R1�R3�R3�R2
�R1�R2

= exp�−
�R3 − �c12 + id12 � ẑ��2

2lB
2 � .

�12�

We have introduced here the center-of-mass coordinates c12
= �R1+R2� /2 and the relative coordinates d12= �R2−R1� /2.

Provided that V�x ,y� is an analytic function of both x and
y, the reduced matrix element v�1;�2

of the potential appear-
ing in Eq. �9� can be written35 as a series in powers of the
magnetic length lB,

v�1;�2
= �

j=0

+� � lB

�2
� j

v�1;�2

�j� , �13�

v�1;�2

�j� = �
k=0

j
�m1 + k�!
�m1! m2!

	m1+k,m2+j−k

k! �j − k�!
��X + i�Y�k

���X − i�Y� j−kV�R��c12+id12�ẑ. �14�

Solving exactly Dyson equation �Eq. �11�� for an arbitrary
potential V is certainly a formidable task. Remarkably, how-
ever, from the structure of this equation, one can show that
the function g�1;�2

depends on the two vortex coordinates R1

and R2 through the special combination c12+ id12� ẑ only.
Indeed, let us differentiate Eq. �11� with respect to the first
vortex position,

�� − Em1

 i	���X1

− i�Y1
�g�1;�2

R,A = �
�3

��X1
− i�Y1

�

��v�1;�3
g�3;�2

R,A �R1�R3�R3�R2
�R1�R2 � . �15�

Then, noting that from Eqs. �12� and �14�,

��X1
− i�Y1

�� �R1�R3�R3�R2
�R1�R2 � = 0, �16�

��X1
− i�Y1

�v�1;�3
= 0, �17�

and considering Eq. �15�, we arrive to the relation

�X1
g�1;�2

R,A = i�Y1
g�1;�2

R,A . �18�

We can establish similarly from the other Dyson equation
�i.e., G=G0+GVG0� that

�X2
g�1;�2

R,A = − i�Y2
g�1;�2

R,A . �19�

We thus deduce from these two relations �Eqs. �18� and �19��
that the function g depends on the vortex positions R1 and
R2 in the following way:

g�1;�2
= gm1;m2

�R1 + R2 + i�R2 − R1� � ẑ

2
� . �20�

This exact result implies that vortex Green’s functions will
be entirely determined once the function g�1;�2

at coinciding
vortex positions R1=R2�R are known �provided it is ana-
lytic in the complex plane�. This task is addressed in Sec.
II C.

C. High magnetic-field expansion of vortex Green’s function

We are mainly interested in the high magnetic-field re-
gime, i.e., when the magnetic length lB=��c / �e�B is small
compared to the typical length scale of the �possibly random�
potential V�r�. We aim at solving the Dyson equation �Eq.
�11�� as a systematic expansion in powers of lB, i.e., expand-
ing the function g�1;�2

as

g�1;�2
= �

j=0

+� � lB

�2
� j

g�1;�2

�j� . �21�

This expansion is possible because, using the change in func-
tion �10�, the nonanalytic dependence on the magnetic length
lB which was contained in the first term of the right-hand side
�rhs� of Eq. �7� has been fully transferred to the overlap
terms �Eq. �12�� appearing in the integral contribution of the
Dyson equation �Eq. �11��. At large magnetic fields �i.e.,
small lB� and when R1 is close to R2 the main contribution to
the integral over R3 in Eq. �11� comes when R3 is near both
positions R1 and R2. Because Green’s function �20� depends
on a linear combination of the two vortex locations, it is
enough to calculate vortex Green’s function at coinciding
points R1=R2�R, so that, from Eq. �11�, only the value of
the function vm1,R;m3,R3

gm3,R3;m2,R has to be considered. The
Dyson equation can now be solved by expanding the nonlo-
cal functions g and v around coinciding points using a Taylor
series at R3 close to R,

gm3,R3;m2,R = �
k=0

+�
��X3 − X� − i�Y3 − Y��k

k! 2k ��X + i�Y�kgm3;m2
�R� ,

�22�

vm1,R;m3,R3
= �

k�=0

+�
��X3 − X� + i�Y3 − Y��k�

k�! 2k�
��X − i�Y�k�vm1;m3

�R� ,

�23�

where we have taken into account the spatial dependences of
v �see Eq. �14�� and g �see Eq. �20��. The integral over the
vortex position R3 in Eq. �11� can then be evaluated using
the following property of Gaussian integrals:
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� d2R3

2�lB
2 vm1,R;m3,R3

gm3,R3;m2,Re−�R3 − R�2/2lB
2

=� d2R3

2�lB
2 �

k,k�=0

+�

��X3 − X� − i�Y3 − Y��k��X3 − X�

+ i�Y3 − Y��k� �
e−�R3 − R�2/2lB

2

k ! k�! 2k+k�
��X − i�Y�k�vm1;m3

�R�

���X + i�Y�kgm3;m2
�R� , �24�

=�
k=0

+� � lB

�2
�2k 1

k!
��X − i�Y�kvm1;m3

�R���X + i�Y�kgm3;m2
�R� .

�25�

Combining the different series expansions of the matrix
elements of the potential �Eqs. �13� and �14�� of vortex
Green’s function gR,A �Eq. �21�� and of the integral term �Eq.
�25�� in the Dyson equation, the functions g�1;�2

R,A at coinciding
points R1=R2 are then entirely determined order by order in
powers of the magnetic length lB. In fact, vortex Green’s
function g�n� at order lB

n is related to the terms g�l� �with l
�n� through a closed-form recursive relation,

gm1;m2

�n� �R� = gm1;m1

�0� �R��
l=0

n−1

�
j=0

n−l

�
k=0

�n−l�/2
1

k!
	n,2k+j+l �

m3=m1−j

m1+j

���X + i�Y�kgm3;m2

�l� �R���X − i�Y�kvm1;m3

�j� �R� ,

�26�

where the function v�j� is given by Eq. �14� at coinciding
points,

vm1;m2

�j� �R� = �
k=0

j
�m1 + k�!
�m1! m2!

	m1+k,m2+j−k

k ! �j − k�!
��X + i�Y�k

���X − i�Y� j−kV�R� , �27�

and the zeroth order contribution g�0�, which suffices to de-
termine the whole series, is given in Eq. �29� below.

Obviously, the present method generates a systematic ex-
pansion for vortex Green’s functions in series of the mag-
netic length. Even for a disordered potential that is smooth
on the scale of lB, the question of the accuracy and conver-
gence of this expansion has to be addressed. We refer the
reader both to a general discussion of this important point in
Sec. II F and to a concrete comparison with an exactly solv-
able model in Sec. V.

D. Vortex Green’s functions up to order lB
3

For the calculations to follow in the rest of the paper,
vortex Green’s functions up to order lB

3 will be needed, and
these useful expressions are given here. At leading order �ze-
roth order in magnetic length� the equation determining the
function g�0� is trivially found by setting k=0 in formula
�25�, which is then reported in Dyson equation �Eq. �11��,

�� − Em1

 i	�gm1;m2

�0� �R� = 	m1,m2
+ V�R�gm1;m2

�0� �R� .

�28�

This equation is entirely closed and yields straightforwardly,

gm1;m2

�0�R,A�R� =
	m1,m2

� − �m1
�R� 
 i	

, �29�

with �m�R�=Em+V�R�. Green’s function at leading order is
diagonal with respect to the vortex circulation quantum num-
ber m. We regard this robustness of m independently of the
detailed form and strength of the potential V as a signature of
its topological nature. We see that, in addition to a kinetic
term �Em�, the energy of the vortex state �m�R� now also
contains the value of the potential energy V�R� at the vortex
location, which lifts the huge degeneracy of the Landau lev-
els. This leading order of the calculation clearly corresponds
to the strict semiclassical limit10,11,13,34 at lB=0.

All subleading contributions are straightforwardly deter-
mined using the recursive relation �26�, which for n=1 gives
the order lB contribution,

gm1;m2

�1�R,A�R� = gm1;m1

�0� �R�gm2;m2

�0� �R�vm1;m2

�1� �R� , �30�

=
vm1;m2

�1� �R�

�� − �m1
�R� 
 i	��� − �m2

�R� 
 i	�
,

�31�

where from Eq. �14�

vm1;m2

�1� �R� = ��m2	m1+1,m2
��X + i�Y� + �m1	m1,m2+1

���X − i�Y��V�R� . �32�

We thus see that a mixing between adjacent Landau levels
appears in the presence of a gradient of the potential V.

For the determination of the function g�2�, the matrix ele-
ments of the potential at order lB

2 are needed, which read
from Eq. �14�,

vm1;m2

�2� �R� =
1

2

max�m1,m2�!
�m1! m2!

�	m1+2,m2
��X + i�Y�2 + 	m1,m2+2

���X − i�Y�2 + 2�m1 + 1�	m1,m2
R�V�R� . �33�

Recursion relation �26� at this order gives

gm1;m2

�2� �R� = gm1;m1

�0� 	vm1;m2

�2� �R�gm2;m2

�0� �R� + �
m3

vm1;m3

�1� �R�

�gm3;m2

�1� �R� + 	m1,m2
�RV�R� · �Rgm1;m1

�0� �R�
 .

�34�

The function g�2� consequently contains diagonal elements
�m1=m2� and elements mixing Landau levels separated by an
energy of 2��c �terms with m1=m2
2�,
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gm1;m2

�2� �R� = 	m1,m2	�m1 + 1�
RV

�m1

2 + �m1 + 1

�m1+1
+

m1

�m1−1
+

1

�m1

� ��RV�2

�m1

2 
 + �m1 + 1�m1 + 2	m1+2,m2

�	 ��X + i�Y�2V

2�m1
�m2

+
���X + i�Y�V�2

�m1
�m1+1�m1+2


 + �m2 + 1�m2 + 2	m1,m2+2	 ��X − i�Y�2V

2�m1
�m2

+
���X − i�Y�V�2

�m2+2�m2+1�m2


 , �35�

where we have introduced the short-hand notation �m=�
−�m�R�
 i	.

As for third-order Green’s function, we shall not write
here the full expression, which is rather cumbersome. The
derivation of these terms from Eq. �26� is however straight-
forward, and Appendix A provides the components that are
needed for subsequent calculations.

E. Green’s functions in the electronic representation

The aim of this section is to connect local vortex Green’s
function, determined previously in the magnetic length ex-
pansion, to physical observables. For this purpose, we need
to express Green’s functions in terms of the electronic posi-
tions r, which, thanks to the completeness relation satisfied
by the vortex states,35 can be obtained as

G�r,r�,�� = �
�1,�2

G�1;�2
�����2

� �r����1
�r� . �36�

Rewriting in terms of the vortex location R and circulation
m, this expression reads

G�r,r�,�� =� d2R1

2�lB
2� d2R2

2�lB
2 �

m1,m2

Gm1,R1;m2,R2
���

� �m2,R2

� �r���m1,R1
�r� . �37�

Besides the double integral in the above formula, the diffi-
culty we immediately encounter is that nonlocal vortex
Green’s function is in principle needed. Again, we are going
to see that key formula �20� allows us to reformulate this
expression in terms of local vortex Green’s function deter-
mined in Sec. II C. Inserting expression �10�, we first write
the different exponential factors appearing into the integrand
of expression �37� as

�R1�R2e−��r − R1�2−2i�r�R1�·ẑ�/4lB
2
e−��r� − R2�2+2i�r��R2�·ẑ�/4lB

2

= e−2d12
2 /lB

2
e−��r − R�2−2i�r�R�·ẑ�/4lB

2
e−��r� − R�2+2i�r��R�·ẑ�/4lB

2
,

�38�

where R=c12− id12� ẑ is a complex combination of the cen-
ter of mass and of the relative vortex coordinates. Similarly,
the polynomial parts of the vortex wave functions can be
written as

�x� − X2 − i�y� − Y2��m2�x − X1 + i�y − Y1��m1

= �x� − X − i�y� − Y��m2�x − X + i�y − Y��m1. �39�

It thus seems natural to introduce the change in variables

�R1 ,R2�→ �R ,d12�. The variables X and Y lie a priori on
lines in the complex plane as a result of the complex shift
�−id12� ẑ�. Using the analycity property of the functions in
the integrand, the contours of integration can be deformed to
the real axes. The dependences on the variables R and d12 in
the function gm1,R1;m2,R2

are made separable using Eq. �20�
and expanding the nonlocal g function as

gm1,R1;m2,R2
= gm1;m2

�c12 + id12 � ẑ� , �40�

=gm1;m2
�R + 2id12 � ẑ� , �41�

=�
j=0

+�
�2i�d12 � ẑ� · �R� j

j!
gm1;m2

�R� , �42�

=�
j=0

+�

�
k=0

j
�d12x − id12y�k�d12x + id12y� j−k

k ! �j − k� ! �− 1�k

� ��X + i�Y�k��X − i�Y� j−kgm1;m2
�R� , �43�

where we have used 2i�d12� ẑ� ·�R= �d12x+ id12y���X+ i�Y�
− �d12x− id12y���X− i�Y� and then applied the binomial theo-
rem. Inserting expansion �43� into Eq. �37� and using Eqs.
�38� and �39�, we can then perform the integral over the
relative coordinates d12 to finally obtain

G�r,r�,�� =� d2R

2�lB
2 �

m,m�

�m�,R
� �r���m,R�r�

� �
k=0

+�
1

k!
�−

lB
2

2
R�k

gm;m��R� . �44�

F. On the convergence of the lB expansion

Equation �44� above is clearly remarkable as it connects
local vortex Green’s function gm;m��R� to the nonlocal elec-
tronic propagator G�r ,r� ,��, from which all equilibrium
physical properties can be obtained. Because the vortex wave
functions appearing in this expression have a finite extension
in space of order lB, the combination of Eq. �44� with recur-
sion relation �26�, which encodes the small lB expansion of
gm;m��R�, allows one to systematically obtain quantum ex-
pressions for the physical observables, i.e., that are naively
valid at small but finite magnetic length. In contrast, the
usual semiclassical expansion13,34,36 is formulated in a strict
lB→0 limit, which would appear in our formalism as a fur-
ther expansion in powers of lB of the wave functions in Eq.
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�44�. The latter semiclassical expansion, which is analyzed in
detail in Secs. III D and IV D, is clearly asymptotic in nature
and certainly fails to be accurate at low temperature, where
quantum effects set in �this is explicitly demonstrated in Sec.
V with the comparison to an exactly solvable model�.

A central question is whether our expansion, performed
order by order in powers of lB for vortex Green’s function
g�R�, does fully capture the quantum effects that survive at
small but nonzero magnetic length. As discussed by several
authors,10,12 the Schrödinger equation becomes integrable in
this limit, with constants of motion associated to equipoten-
tial lines of the random potential. The wave functions are
then localized on a scale lB transverse to these equipotentials
and spread on the whole constant energy contour. While this
picture is certainly appealing, difficulties arise for generating
a systematic expansion that takes into account Landau level
mixing. In contrast, the vortex states are flexible enough to
capture these important contributions but correspond to a
starting point where wave functions are fully localized at the
scale lB. Indeed, the first term in our expansion �Eq. �29��
indicates that eigenstates in the B=� limit correspond to
equipotential points, not lines, and this is related to the fact
that the vortex wave functions, which form an overcomplete
basis, become pointlike and thus orthogonal in this limit.
Physically, one expects that quantum fluctuations will play a
crucial role as soon as B is finite by selecting orthogonal, and
therefore more extended, wave packets. Mathematically, this
phenomenon is reflected in our formalism by the presence of
terms that have to be kept at each order of the small lB
expansion for vortex Green’s functions �e.g., at order lB

2 ,
these are the terms with a single frequency �m in Eq. �35��.
The need for resumming this development comes, in fact,
from the Taylor expansion to finite order of nonlocal vortex
Green’s function �Eqs. �22� and �43��. Fortunately, as terms
at an arbitrary order in lB can be generated through relation
�26�, it is possible to achieve a resummation of the leading
contributions to vortex Green’s function. Although these
considerations are beyond the scope of the present paper, a
first step in this direction is presented for the case of the local
electronic density in Sec. V D.

III. ELECTRON DENSITY

A. General expression

Vortex Green’s functions being determined, one can then
derive quantum microscopic expressions for the local physi-
cal observables. The equilibrium local density is related to
distribution �lesser component� Green’s function G� in the
electronic representation by the general formula,

��r� = − i� d�

2�
G��r,r,�� �45�

=− i� d�

2�
� d2R

2�lB
2 �

m,m�

�m�,R
� �r��m,R�r�

� �
k=0

+�
1

k!
�−

lB
2

2
R�k

gm;m�
� �R� , �46�

where Eq. �44� has been used. The distribution function in
the vortex basis reads at equilibrium,

− igm;m�
� �R� = inF����gm;m�

R �R� − gm;m�
A �R�� , �47�

nF��� =
1

1 + exp��� − ���/T�
, �48�

where the Fermi-Dirac distribution function has been intro-
duced, with �� /e=�0 as the electrochemical potential
�which is constant in space at thermodynamic equilibrium�.

The computation of the electronic density at an arbitrary
order in the magnetic length expansion is now straightfor-
ward using Eq. �26� to generate successive contributions to
gm;m�

� �R�. An important remark is however in order. While
Eq. �46� involves local Green’s function relative to the vor-
tex position R, it takes into account all Landau level mixing
processes �terms with m�m��. As we will discover in the
following calculations, the combination of vortex wave func-

tions �m�,R
� �r��m,R�r� involves an extra power lB

�m−m��. For
this reason, the contribution from g�1�, which couples adja-
cent Landau levels, is actually of order lB

2 and not lB. Simi-
larly, the diagonal �m=m�� terms in g�2� are indeed of order
lB
2 , while contributions with m=m�
2 �see Eq. �35�� are

overall of order lB
4 and will be discarded in the following.

B. Electron density at leading order

At leading order of the expansion in lB, vortex Green’s
function is given by Eq. �29� so that the distribution function
reads

− igm;m�
�0�� �R� = 2�nF���	m,m�	�� − �m�R�� . �49�

Inserting this in Eq. �46� and performing the frequency sum,
we obtain the local electron density,

��0��r� =� d2R

2�lB
2 �

m=0

+�

��m,R�r��2nF��m�R�� , �50�

��m,R�r��2 =
1

2�m ! lB
2 �R − r

�2lB
�2m

exp	−
�R − r�2

2lB
2 
 .

�51�

We note that this zeroth order contribution �50� is already
more powerful than the expression for the electron density
that is obtained in the strict limit lB→0 of infinite magnetic
field,

��0��r� →
1

2�lB
2 �

m=0

+�

nF��m�r�� . �52�

This semiclassical result �52� has been widely used in the
literature19,36 as a basis to screening calculations. It however
ignores the fact that the physical density cannot vary faster
than the scale lB as is clear from Eqs. �50� and �51�, and this
leads to important quantitative differences, especially at low
temperatures where quantum smearing effects supersede the
thermal broadening of the density.30

Thus, expression �50� clearly includes important resum-
mations of a purely semiclassical development of the physi-
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cal density such as Eq. �52�, which is naturally encoded or-
der by order in the expansion of vortex Green’s functions.
Before addressing the question of the convergence of both
types of calculations in Secs. III D and IV D, we compute
now the next order contribution to the density.

C. Electron density at order lB
2

As mentioned above, the contribution of order lB
2 to the

density comes from three origins: the nondiagonal part of
g�1�, the diagonal part of g�2�, and the term Rg�0� in expres-
sion �46� appearing with k=1. Let us investigate these dif-
ferent contributions in turn.

1. Contribution from g(1)

The contribution from g�1� is obtained by inserting Eq.
�31� in Eq. �21� and reporting vortex Green’s function in Eq.
�46�,

��1��r� =� d2R

2�lB
2 �

m=0

+�
lB

�2
�m + 1��m+1,R

� �r��m,R�r�

���XV + i�YV� + �m,R
� �r��m+1,R�r���XV − i�YV��

�
�nF��m+1�R�� − nF��m�R���

��c
. �53�

It is useful to note the relation, proved in Appendix B,

�m + 1�m+1,R
� �r��m,R�r� = −

lB

�2
��x − i�y��

p=0

m

��p,R�r��2,

�54�

which shows that the product of wave functions �m+1
� �m

with adjacent Landau indices generates terms that behave as
lB, so that the contribution from g�1� to the density is indeed
of order lB

2 . Using Eq. �54�, expression �53� can be written in
the equivalent form,

��1��r� = −� d2R

2�lB
2 �

m=0

+�
�nF��m+1�R�� − nF��m�R���

��c

� lB
2�RV · �

p=0

m

�r��p,R�r��2. �55�

Performing one of the discrete sums and an integration by
parts and noting that �r��m,R�r��2=−�R��m,R�r��2, we end
up with

��1��r� =� d2R

2�lB
2 �

m=0

+�

��m,R�r��2lB
2�nF���m�R��

��RV�2

��c

+ nF��m�R��
RV

��c
� . �56�

2. Contribution from g(2)

From Eq. �46� the remaining contributions to the electron
density at order lB

2 are clearly

��2��r� = − i� d�

2�
� d2R

2�lB
2 �

m

�m,R
� �r��m,R�r�	 lB

2

2
gm;m

�2���R�

−
lB
2

2
Rgm;m

�0���R�
 . �57�

Using results �29� and �35�, we obtain

��2��r� =� d2R

2�lB
2 �

m=0

+�

��m,R�r��2
lB
2

2
�nF���m�R��

��mRV −
��RV�2

��c
� − nF���m�R��

��RV�2

2

+
��RV�2

���c�2 ��m + 1�nF��m+1�R�� − �2m + 1�nF��m�R��

+ mnF��m−1�R���� . �58�

The components 	m,m�
2 of the function g�2� �see Eq. �35��
have not been included in the calculations since they gener-
ate corrections to the density of the order lB

4 .
The final results for the electronic density up to order lB

2 ,
given in formulas �50�, �56�, and �58�, will be exploited in
detail by a comparison with an exactly solvable model in
Sec. V. In anticipation to Sec. V D, we note that all these
expressions require at very low temperature a resummation
procedure, which leads to define renormalized energies and
wave functions.

D. Semiclassical density: The strict lB\0 expansion

As already mentioned above, it is possible to express the
electron density under the form of a strict expansion in pow-
ers of the magnetic length. This corresponds exactly to a
systematic semiclassical development with respect to the
center-of-mass motion �the orbital motion giving rise to the
Landau levels is always treated quantum mechanically�.

In this section, we write down explicitly the first correc-
tions to the well-known semiclassical expression, i.e., Eq.
�52�, for the electron density. Nonlocal expressions �50�,
�56�, and �58� can be transformed into local ones, in a similar
way as has been done at the level of the Dyson equation �Eq.
�11��, by replacing any integral over the vortex position R in
the following way:

� d2R��m,R�r��2f�R� =� d2R��m,R�0��2f�r + R�

=� d2R��m,R�0��2�
j=0

+�
�R · �r� j

j!
f�r� ,

�59�

=�
j=0

+�
�m + j�!
�j!�2m!

� lB
2

2
r� j

f�r� , �60�

where f�R� represents an arbitrary function of the vortex
position. Using Eq. �60� in Eq. �50�, we get the semiclassical
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contribution of order lB
2 arising from the expansion of ��0�,

��0��r� =
1

2�lB
2 �

m=0

+� �nF��m�r�� +
lB
2

2
�m + 1�rnF��m�r��� .

�61�

At order lB
2 , the contribution from ��1� �Eq. �56�� is readily

obtained as

��1��r� =
1

2�lB
2 �

m=0

+�

lB
2�nF���m�r��

��rV�2

��c
+ nF��m�r��rV� .

�62�

Similarly, the contribution from ��2� �Eq. �58�� reads after
simplification,

��2��r� =
1

2�lB
2 �

m=0

+�
lB
2

2
�nF���m�r���mrV −

��rV�2

��c
�

− nF���m�r��
��rV�2

2
� . �63�

Collecting all the different contributions, we find that the
total electronic density in high magnetic fields including the
first quantum corrections of order lB

2 is given by

��r� =
1

2�lB
2 �

m=0

+�

nF��m�r�� +
1

2�lB
2 �

m=0

+�

lB
2�nF��m�r��

rV

��c

+ �m +
1

2
�nF���m�r��rV +

1

2
nF���m�r��

��rV�2

��c

+
1

2
�m +

1

2
�nF���m�r����rV�2� . �64�

In order to physically interpret this result, we can alterna-
tively write

��r� =
1

2�lB
2 �

m=0

+� �nF��̃m�r�� + lB
2nF��m�r��

rV

��c

+ lB
2nF���m�r��

��rV�2

��c
+

lB
2

2
�m +

1

2
�rnF��m�r��� ,

�65�

where corrections proportional to nF� in ��2� have been ab-
sorbed into renormalized Landau-level energies as

�̃m�r� = �m�r� +
lB
2

2
�m +

1

2
�rV −

lB
2

2

��rV�2

��c
. �66�

These semiclassical energies �Eq. �66�� have been previously
found in the literature13,34 with techniques based on effective
Hamiltonians, which neglect Landau level mixing, and thus
do not allow one to compute full local-density expression
�65�. The second term appearing in the rhs of Eq. �65�, pro-
portional to lB

2nFrV /��c, reflects the small but nonzero
compressibility of the electron gas even in the absence of
electron-electron interaction. This term and also the third
term in Eq. �65�, both derived from g�1�, stem from adjacent

Landau level mixing processes and can be interpreted as
small corrections to the wave function for a smooth potential
V�r�. Clearly, the fourth term in Eq. �65�, proportional to
lB
2rnF, is only a small correction if the electronic density is

also smooth at the scale of lB. This indicates that the semi-
classical picture breaks down at low temperature. In this
case, one has to resort to fully quantum expressions such as
Eqs. �50�, �56�, and �58�, as will be discussed in Sec. V C.

E. Electron-electron interactions and screening

As a result of electron-electron interactions, the potential
V entering into the previous expressions through the Fermi
function is possibly very different from the bare electrostatic
potential �related to confining gates and random impurities
outside the bidimensional electron gas� and has to be deter-
mined self-consistently from screening theory. Previous
work, rooted in the semiclassical picture, used expressions
for the electron density such as Eq. �52� as a starting point
for Thomas-Fermi type of calculations.19,20,37 The physical
picture that emerged from these studies is that the sample
separates into either compressible regions, where screening
of the bare potential is almost perfect and the electronic den-
sity varies spatially, or into incompressible regions, where
the density is almost exactly pinned and the gradient of the
effective potential is nonzero. Further work30 has however
shown that important deviations result from a better reso-
lution of the self-consistent problem within a Hartree ap-
proximation that includes quantum smearing effects from the
electronic wave functions. Most of these calculations are per-
formed in simplified one-dimensional geometries, since the
self-consistent resolution of the Schrödinger equation be-
comes prohibitive for an arbitrary disorder landscape.27,38

One can hope that our high-field expression for the density
will turn out to be a very useful tool in this context of the
study of electron-electron interaction effects in a disordered
system.

IV. ELECTRON CURRENT DENSITY

A. General expression

The local electron current density is defined in terms of
electronic Green’s function by

j�r,�� = �	 e�

2m�
��r� − �r� + i

e2

m�c
A
G��r,r�,���

r�=r
.

�67�

In a first step, this expression can be written in terms of
vortex Green’s functions. Inserting expression �44�, we get

j�r,�� =
e�

2m�� d2R

2�lB
2 �

m,m�

	�m,R�r��r�m�,R
� �r�

− �m�,R
� �r��r�m,R�r� + 2i

e

�c
A�m�,R

� �r��m,R�r�

� �

k=0

+�
1

k!
�−

lB
2

2
R�k

gm,;m�
� �R,�� . �68�
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The dependence on the variable r is contained only in the wave functions and the vector potential A, which are all known �we
remind that we have chosen the symmetrical gauge to write down explicitly the vortex wave functions�. Using the relation

�r�m = �
�m
�2lB

�m−1 −
�m + 1
�2lB

�m+1 +
iy

2lB
2 �m

i
�m
�2lB

�m−1 + i
�m + 1
�2lB

�m+1 −
ix

2lB
2 �m

� , �69�

we can rewrite the bracketed term in Eq. �68� as

i�r��m,R�r��m�,R
� �r�� � ẑ −

�2

lB
� �m� + 1�m,R�r��m�+1,R

� �r� − �m + 1�m+1,R�r��m�,R
� �r�

i�m� + 1�m,R�r��m�+1,R
� �r� + i�m + 1�m+1,R�r��m�,R

� �r�
� . �70�

Inserting expression �70� in formula �68�, we finally get our starting point for the computation of the current density,

j�r,�� =
e�

2m�	ẑ � �r��r,�� −
�2

lB
� d2R

2�lB
2 �

m,m�
� �m� + 1�m,R�r��m�+1,R

� �r� − �m + 1�m+1,R�r��m�,R
� �r�

i�m� + 1�m,R�r��m�+1,R
� �r� + i�m + 1�m+1,R�r��m�,R

� �r� �
� �

k=0

+�
1

k!�−
lB
2

2
R�k

gm;m�
� �R,��
 , �71�

where ��r ,��=−iG��r ,r ,�� is the local spectral function.
Similar to Sec. III, we wish to collect all contributions up to
order lB

2 to the local current density.

B. Electronic current at leading order

The procedure to compute the different contributions to
the current density is completely analogous to the calculation
of the electronic density done in Sec. III, although more
lengthy. The leading contributions are easily seen in Eq. �71�
to come from g�0� and g�1�.

1. Contribution from g(0): Density-gradient current

Leading-order Green’s function is purely diagonal with
respect to the Landau-level index m, so that we have to con-
sider combinations as �m+1�m�m+1

� in Eq. �71�. Inserting
both ��0� from Eq. �50� and g�0� from Eq. �29� �considering
only the contribution with k=0� and using useful relation
�54�, we readily obtain after the frequency integral

j�0��r� = −
e

h
ẑ � �r� d2R

2�lB
2 �

m=0

+�

��cnF��m�R��

� 	�
p=0

m

��p,R�r��2 −
��m,R�r��2

2 
 . �72�

This contribution to the current density has the property that
its volume average vanishes: �d2rj�0��r�=0.

As done previously for the local electronic density,
density-gradient contribution �72� can be expanded in the
strict lB→0 limit to recover a semiclassical expression,

j�0��r� =
e

h
�
m=0

+� �m +
1

2
���c�rnF��m�r�� � ẑ . �73�

This result coincides with the formula for the “edge” elec-
tronic current density derived within a different method in
Ref. 36. It has clearly the form of a current flow responding
to a gradient of the density. It thus vanishes in the incom-
pressible regions where the density is quasiconstant and be-
comes important in the compressible regions of the system
where the local density is strongly inhomogeneous and the
bare potential is almost perfectly screened. Such regions are
not necessarily located at the edges of the system but are
rather spread throughout the system. The denomination of
“edge current” is thus in some sense abusive. Therefore, we
prefer to call contributions �72� and �73� a density-gradient
current.

2. Contribution from g(1): Drift current

As emphasized in our previous paper,35 the well-known
drift contribution to the current density appears, in fact, be-
yond the limit lB→0, i.e., when considering Green’s func-
tions g�1� which take into account the first processes of Lan-
dau level mixing. Such a drift contribution is however of the
same order as the density-gradient contribution �the reason is
that there is a prefactor lB

−1 in the general expression of the
current density, see the second term in the right-hand side of
Eq. �71��.

Using the general expression for current density �71� with
k=0 and inserting g�1� from Eq. �31�, we get
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j�1��r� =
e�

2m�
ẑ � �r�

�1��r�

+
e�

m�� d2R

2�lB
2 �

m=0

+�
nF��m+1�R�� − nF��m�R��

��c
	�m + 1�

���m+1,R�r��2ẑ � �RV�R� + �m + 1�m + 2

��Im

Re
���XV + i�YV��m,R�r��m+2,R

� �r�
 . �74�

In Appendix C we provide a detailed calculation of this ex-
pression �74�, which contains a peculiar term �the last one�
involving vortex wave functions with Landau indices that
differ by 2. As a result, we find that the leading contribution
to Eq. �74� reads

j�1��r� =
e

h
� d2R�

m=0

+�

��m,R�r��2nF��m�R���RV�R� � ẑ .

�75�

In the limit lB→0, above contribution �75� yields

j�1��r� =
e

h
�
m=0

+�

nF��m�r���rV�r� � ẑ . �76�

We thus recover the well-known drift current that can be
found in the literature,36 while expression �75� constitutes a
quantum version of this drift current, which may be used at
low temperature.

C. Electronic current at order lB
2

We aim at collecting exhaustively all contributions to the
current density that are proportional to lB

2: this is the order
where the first dissipative features are expected to appear
�see Sec. VI�. We will simply list here the various origins for
these terms and refer the reader to Appendix C for the de-
tailed calculation.

There is first a subdominant contribution coming from
g�1�, with expression �74�. In Appendix C this contribution is
denoted jsub

�1� and is given in Eq. �C6�. Another contribution of
order lB

2 arises with second-order Green’s function g�2�. The
latter contains diagonal elements �m=m�� that combine with
the first and second terms in the right-hand side of Eq. �71�
and also off-diagonal elements 	m,m�
2, which have to be
inserted in the second term of the right-hand side of Eq. �71�.
The final expression for j�2�, which also includes the contri-
bution from the function g�0� appearing with the term k=1 in
Eq. �71�, is given by Eq. �C8�. Finally, the off-diagonal ele-
ments 	m,m�
1 of g�3�, calculated in Appendix A, combine
with the contribution from the function g�1� associated with
the term k=1 in Eq. �71�, giving the final result for j�3� in Eq.
�C10�.

D. Semiclassical current: The strict lB\0 expansion

As previously done with the local electronic density, it is
also possible to express the current density under the form of
a strict expansion in powers of the magnetic length. In this

section, we want to obtain the corrections of order lB
2 to the

well-known semiclassical expression �76� for the drift cur-
rent, which is purely transverse. All these subleading contri-
butions are collected in Appendix C. Since the semiclassical
expansion in lB is only valid in a “high” temperature regime,
we will only present here the terms proportional to the Fermi
factor that are dominant in this regime with respect to the
other terms involving derivatives of the Fermi factor.

Collecting Eq. �76� with the contributions from Eqs.
�C11�–�C14�, we get the leading contribution to the semiclas-
sical current,

j�r� =
e

h
�
m=0

+�

nF��m�r��	�rV + lB
2 ��rV · �r�

��c
�rV

+
3

2
lB
2�m +

1

2
��rV
 � ẑ . �77�

This expression constitutes one of the main physical results
of the paper and is further analyzed in Sec. IV dealing with
the nonequilibrium transport properties.

V. CHECKING OUR THEORY: COMPARISONS WITH AN
EXACTLY SOLVABLE CASE

A. One-dimensional parabolic confinement model

The aim of this section is to benchmark our results for the
local equilibrium charge and current densities obtained with
the vortex states. For this purpose a comparison to the exact
solution that can be obtained for the case of a one-
dimensional parabolic confining potential turns out to be
quite enlightening. We will therefore focus here on the fol-
lowing potential profile:

V�x� =
1

2
m��0

2x2. �78�

Following Ref. 36, the exact eigenstates and eigenenergies
corresponding to this particular choice of one-dimensional
potential are given in the Landau gauge A=Bxŷ by

�np�r� =
e−ipye−�x − ��c/��pL2�2/2L2

�2n+1n ! �3/2L
Hn� x −

�c

�
pL2

L
� , �79�

Enp = ���n +
1

2
� + V�pL2� , �80�

where �=��c
2+�0

2 and L=�� /m�� are the renormalized
cyclotron pulsation and magnetic length, respectively, and
Hn denotes the nth Hermite polynomial. These wave func-
tions, fully extended plane waves along constant energy
contour while strongly localized in the transverse x direction,
are certainly very different from the vortex states �Eq. �2��,
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which are localized in all directions without preferred sym-
metry, so that this comparison provides a very stringent test
on the vortex theory.

Physical observables, such as the local electronic density,
are readily obtained as

��x� = �
n=0

+� �
−�

+�

dp��np�r��2nF�Enp� , �81�

while the equilibrium current density, directed in the y direc-
tion, reads36

j�x� = �
n=0

+� �
−�

+�

dpjnp�x�nF�Enp� , �82�

where

jnp�x� =
�e��2

�c
��c

�
pL2 − x���np�r��2 + �e��clB

2 V��x�
��c

��np�r��2.

�83�

B. Checking analytically the semiclassical expansion

The first check, which is crucial for demonstrating the
mathematical consistency of our semiclassical limit, as ob-
tained from the vortex calculation, consists in developing
both Eqs. �81� and �83� in a strict magnetic length expansion
at order lB

2 . For this purpose, we develop � and L using
�0

2 /�c
2= lB

2V��x� /��c and perform a Taylor expansion. The
resulting Gaussian integrals are computed using the formula

�
−�

+�

d�e−�2
�2Hn

2��� = ��2nn ! �n +
1

2
� . �84�

This leads to the result

��x� =
1

2�lB
2 �

n=0

+� 	nF�x� + lB
2nF�x�

V��x�
��c

+ lB
2nF��x�V��x�

+
lB
2

2
nF��x�

�V��x��2

��c
+

lB
2

2
�n +

1

2
�nF��x��V��x��2
 ,

�85�

where nF�x�=nF��n+1 /2���c+V�x��, which is obviously
equivalent to Eq. �64�.

The calculation of the semiclassical current density at or-
der lB

2 follows the same lines, and using formula

�
−�

+�

d�e−�2
�4Hn

2��� = 3��2n−1n ! �n2 + n + 1/2� , �86�

we recover the leading density-gradient and drift contribu-
tions,

j0�x� =
�e�
h

�
n=0

+� 	nF�x�V� + �n +
1

2
���cnF��x�V�
 , �87�

while the terms of order lB
2 read

j2�x� =
�e�
h

lB
2�

n=0

+� 	nF��x�
4

�n2 + n + 1/2���c�V��3 + nF��x�

��5

4
n2 +

5

4
n +

1

2
�V�V���c + nF��x�

�V��3

2��c

+ nF��x��n +
1

2
��V��3 + nF��x�

7

2
�n +

1

2
�V�V�

+ nF�x�V�
V�

��c

 . �88�

One can easily check that collecting all terms in expressions
�C11�–�C14� for a one-dimensional potential yields the same
result, giving a good confidence in the vortex method to
generate the semiclassical expansion. We emphasize how-
ever that our semiclassical results were derived for an arbi-
trary two-dimensional potential, so that extra terms are actu-
ally present in our semiclassical formula with respect to Eq.
�88�. In particular some of the terms appearing in Eq. �77�
involve derivatives of the potential in two orthogonal direc-
tions and cannot be inferred from this simple calculation of a
one-dimensional parabolic potential. It is interesting to note
that in nonequilibrium it is precisely these additional terms in
the current density that are seemingly associated with dissi-
pative features �see Sec. VI�.

C. Systematic numerical comparison to the vortex theory

We aim here at giving a more quantitative comparison for
the electronic density between the exactly solvable model
and the various developments discussed in Sec. III. We there-
fore compute numerically expression �81� and investigate
both the semiclassical approximation �52� and the order lB

2

quantum expressions �50� and �58�. Note that the lB
2 correc-

tions �Eq. �64�� to the semiclassical result present derivatives
of the Fermi factor, which are either very small �at high
temperatures� or very singular at low temperatures, so that
they are not included in the comparison. In contrast, the lB

2

corrections �Eq. �58�� to leading quantum result �50� are
more regular, and their inclusion is important to reach quan-
titative agreement in an intermediate temperature range, as
we will demonstrate below.

In order to show that the reliability of these different ap-
proximation schemes is rooted in specific temperature re-
gimes, we present results for different temperatures at a
given confinement energy ��0=�c /5, small enough to en-
sure the smoothness of the external potential yet already suf-
ficiently large so that the semiclassical approximation is in
trouble at low temperature. The electrochemical potential is
also fixed by taking ��=3�c, so that three Landau levels are
present at the center of the system.

At temperatures not too low compared to the cyclotron
frequency �first panel �a� of Fig. 1 for kBT=0.2��c�, the
semiclassical result is still close to the exact solution, exactly
matched by the quantum result. Lowering further the tem-
perature �second panel �b� of Fig. 1 for kBT=0.1��c� shows
increasing deviations with the semiclassical result, while the
complicated variations in the exact density are perfectly re-
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produced by the quantum formula. In particular, both the
small compressibility in the filling factor n=3 plateau �the
density of the third filled Landau level is slightly greater than
the value 3� �2�lB

2�−1� and the broad smearing of the n=1

and n=2 plateaus are quantitatively described. In the very
low-temperature regime, small shoulders appear at fractional
densities �panel �c� of Fig. 1 for kBT=0.01��c�, which are
associated with the zeros of the Hermite polynomials in Eq.
�79�. These variations are only partially reproduced by the
quantum expression, but the overall agreement remains very
good.

D. Zero temperature limit: Resummation of the quantum
development

We finally motivate the need for a resummation of the
quantum expression to arbitrary order in lB in the very low-
temperature regime, as hinted in Sec. II F. As the semiclas-
sical expression for electronic density �65� is clearly diver-
gent at low temperature, one can indeed ask whether the
leading quantum result �50� and its order lB

2 corrections �56�
and �58� give satisfactory results for all temperatures. De-
spite the excellent agreement observed above, the Fermi fac-
tor derivatives appearing in these order lB

2 terms tend to give
important and uncontrolled contributions in the zero-
temperature limit. To see this, let us forget for the time being
the �negligible� terms inversely proportional to ��c in the
quantum expression for the density, which then simply reads

��r� =� d2R

2�lB
2 �

m=0

+�

��m,R�r��2�nF��m�R�� −
lB
2

4
RnF��m�R��� ,

�89�

=��0��r� −
lB
2

4
r�

�0��r� . �90�

Here we have made an integration by parts to rewrite the
second term in the rhs of Eq. �89�. Because ��0� cannot
change on a scale smaller than lB, as is clear from Eq. �50�,
the lB

2 correcting term in the rhs of Eq. �90� cannot become
singular in the zero-temperature limit, in contrast to semi-
classical expression �65�. However, ��0� does change on the
scale lB at the boundary of an incompressible region at very
low temperature, so that the correction becomes of order one
and needs to be resummed to all orders. The need for a
resummation is mathematically related to the fact that non-
local vortex Green’s function has been developed at coincid-
ing points in Eq. �22� while keeping a finite number of con-
tributions. A clear example of such a nonlocal resummation
to all orders is relation �44� between vortex and electron
propagators. In fact, the correction in Eq. �90� is the combi-
nation of the −�lB

2 /2�Rg�0� term in Eq. �44� and the
�lB

2 /4�Rg�0� contribution that can be extracted from g�2� in
Eq. �35�.

By inspecting recursion relation �26� in the small lB limit,
it is possible to infer that this class of most singular terms in
the vortex propagator is given to all orders by

gm;m�
B→��R� = 	m,m��

k=0

+�
1

k!
� lB

2

4
R�k

gm;m
�0� �R� , �91�

so that their combination with Eq. �44� leads to the final
quantum expression for the density in the small but nonzero
lB limit,
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FIG. 1. �Color online� Local electronic density ��x� in units of
1 /2�lB

2 for the one-dimensional parabolic potential with �0=�c /5
and ��=3�c, as a function of x / lB, comparing exact expression �81�
�solid curve, label Ex.� with semiclassical expansion �52� �dotted-
dashed curved, label Sc.� and the quantum expansion given by Eqs.
�50�, �56�, and �58� �dashed curve, label Qu.�. The three different
panels �a�–�c� correspond to decreasing temperatures kBT /��c

=0.2, 0.1, and 0.01.
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�B→��r� =� d2R

2�lB
2 �

m=0

+�

��m,R�r��2

� �
k=0

+�
1

k!
�−

lB
2

4
R�k

nF��m�R�� . �92�

Using an integration by parts, this equation can be written in
the equivalent form,

�B→��r� =� d2R

2�lB
2 �

m=0

+�

nF��m�R��

� �
k=0

+�
1

k!
�−

lB
2

4
R�k

��m,R�r��2. �93�

We note from Fourier analysis that the differential operator

�
k=0

+�
1

k!
�−

lB
2

4
R�k

is nothing else than a convolution operator with the kernel
e−u2/4t / �4�t�, where t=−lB

2 /4. We can apply this to the vortex
density to find

�B→��r� =� d2R

2�lB
2 �

m=0

+�

nF��m�R����m,R�r��2, �94�

��m,R�r��2 =� d2u

4�t
e−u2/4t��m,R−u�r��2. �95�

Performing formally the remaining Gaussian integral over u
in Eq. �95�, we find

�B→��r� =� d2R

2�lB
2 �

m=0

+�
nF��m�R��

�m ! lB
2 Am�R − r�

� exp	−
�R − r�2

lB
2 
 , �96�

where Am is the following polynomial:

Am�R� =
�m

�sm� 1

1 + s
exp	R2

lB
2

2s

1 + s

�

s=0

. �97�

Final expression �96� for the density is applicable down to
zero temperature and provides the leading contribution in the
small lB limit. In the case of a one-dimensional potential
V�x�, it is easy to check that the Gaussian integral over the
coordinate Y in Eq. �96� leads to the expected Hermite poly-
nomials. Regarding the remaining contributions that can be
gathered from Eqs. �56� and �58�, involving Landau mixing
processes, a complete resummation scheme amounts to extra
shifts in the energies, as discussed in Sec. III D. A final com-
parison is given in Fig. 2, which shows that, as long as �0
��c, these improved quantum expressions are undistin-
guishable from the exact result.

VI. NONEQUILIBRIUM PROPERTIES

A. Distribution function and irreversibility

We have solved so far Hamiltonian �6� within the high
magnetic-field expansion without fully specifying the
potential-energy term V�r�. This scheme allows us to study
the equilibrium and nonequilibrium situations on an equal
footing. At equilibrium, V�r� consists of a fixed background
potential �including a confinement potential and an impurity
random potential� and of a Hartree potential resulting from
the mutual Coulomb interactions between the electrons. As a
result of a self-consistent calculation, this yields a global
effective electrostatic potential Veff associated with local mi-
croscopic electric fields. In the nonequilibrium case, there is
in addition an external potential-energy contribution reflect-
ing the appearance of macroscopic electric fields and of mac-
roscopic chemical-potential gradients in the system induced
by the presence of a macroscopic current flow. Within the
nonequilibrium regime, which is considered from now on in
this section, the potential term V�r� in Hamiltonian �6� con-
sists thus of two different parts,

V�r� = Veff�r� + e��r� . �98�

Here � is the nonequilibrium electrochemical potential that
now varies in space. The latter term takes into account the
presence of a macroscopic electromotive field E=−�r�.

In Ref. 35 we have solved the equation of motion for
correlation Green’s function G� in the vortex representation
using the high magnetic-field expansion and have established
that latter Green’s function expressed in the vortex variables
is related to the retarded and advanced Green’s functions at
any order of our expansion in the nonequilibrium stationary
regime as

2 4 6
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FIG. 2. �Color online� Local electronic density ��x� for the same
parameters as in Fig. 1�c�, focusing on the compressible region
between filling factors n=2 and n=3. This compares exact expres-
sion �81� �thick solid curve, label Ex.� undistinguishable from quan-
tum expression �96� resummed to infinite order in lB �thin solid
curve, label Qu.��, with semiclassical expansion �52� �dotted-
dashed curve, label Sc.� and the quantum expansion up to order lB

2

given by Eqs. �50�, �56�, and �58� �dashed curve, label Qu.�.
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− iG�1;�2

� ��� = inF����G�1;�2

R ��� − G�1;�2

A ���� . �99�

In the electronic representation, the quantity −iG� which has
the character of a distribution function thus becomes

− iG��r,r�,�� = �
�1,�2

��2

� �r����1
�r�inF���

� �G�1;�2

R ��� − G�1;�2

A ���� , �100�

where we have used Eq. �99�. The fact that the same relation
�Eq. �100�� holds in high magnetic fields in the equilibrium
regime as well as in the nonequilibrium stationary regime
can be understood as the realization of a local hydrodynamic
equilibrium �or quasiequilibrium�. This result, which has
been established from the microscopic derivation of the
quantum kinetic equation �see Ref. 35�, is physically ex-
pected given that the microscopic characteristic length scale
for the electron gas, namely, lB�B−1/2, becomes in high mag-
netic fields the shortest length scale. This means that it is
possible to divide the system within a continuum description
into elementary subsystems which are almost isolated from
each other, permitting the introduction of thermodynamic
variables depending on the space variable r �see, e.g., Ref.
39 and references therein�.

It is worth mentioning that we have not introduced so far
in the resolution of the Dyson equation any averaging to
account for the presence of a random potential. In fact, this is
not needed at this level since within the high magnetic-field
expansion all the physics in the vortex representation appears
to be purely local, the Hamiltonian being diagonalized in a
closed-form order by order in powers of the magnetic length
with the use of local vortex Green’s functions gm1;m2

�R�. Dis-
sipation and irreversibility, which are usually introduced al-
ready at the level of the Dyson equation with the impurity
averaging procedure to account for the presence of random
scattering interactions in zero or weak magnetic fields, take
its roots within a different mechanism in high magnetic
fields.

In fact, the stochastic character is intrinsic to our high
magnetic-field expansion making use of the vortex basis, and
we can associate somehow the transformation from the vor-
tex to the electronic representations with a loss of informa-
tion �thus irreversibility� provided that there exists some dy-
namical instability in the system. Indeed, by solving the
Dyson equation in the vortex representation, we have basi-
cally augmented the set of allowed quantum states since the
vortex basis is overcomplete. Note however that the expan-
sion of the matrix elements of the potential in the vortex
representation is granted in high fields due its unicity, which
clearly results from the possibility to truncate the series ex-
pansion in the magnetic length lB �see Ref. 35�. Coming back
to the electron representation, an indeterminacy illustrated by
the presence of weight factors, namely, the wave functions
���r� in Eq. �100�, appears, giving rise to a statistical-like
description. Our high magnetic-field expansion alone con-
tains thus microscopically the stochastic character which is a
prerequisite ingredient for the expression of a loss of infor-
mation. This loss becomes effective as soon as a dynamical

instability associated with a divergence of neighboring tra-
jectories exists in the system. This general view is corrobo-
rated by explicit calculations in the following. In Sec. VI C,
we shall derive a microscopic expression for the conductivity
tensor that is indeed associated in the nonequilibrium regime
with an electrochemical potential drop occurring only in the
vicinity of a local instability of the dynamics which, in the
present case, is brought by the presence of saddle points of
the local equilibrium density.

It is worth noting finally that we do not take into account
the interaction of the system with an external environment.
This alternative approach to dissipation considering the sys-
tem plus reservoir couples the relevant quantum system to a
large number of environmental degrees of freedom, such as
phonons or quantum fluctuations of the electromagnetic
field. Dissipation arises then because the system of interest
can exchange energy with the rest of the larger system. More
precisely, a loss of information is usually explicitly intro-
duced in the calculations when tracing out these environmen-
tal degrees of freedom. We do not consider this mechanism
of dissipation as being the most relevant here. On the con-
trary, the irreversibility mechanism described in this paper
takes place in the bulk of the system itself, i.e., in the two-
dimensional electron gas. This is a fundamental and key
point in our transport theory. The relevance of a given ap-
proach to dissipation can finally be appreciated at the level of
the comparison between theory and experiments, since the
dissipative transport properties are strongly and intrinsically
related to its dissipation mechanisms.

B. Nonequilibrium current density

Since the two potential-energy terms Veff and e� in Eq.
�98� can be treated technically on an equal footing in our
high magnetic-field theory, the nonequilibrium current 	j
can, in fact, be rather straightforwardly deduced from the
expressions of the equilibrium current density derived in Sec.
IV and Appendix C.

The primary goal of this paper is not to provide a full
quantitative analysis of macroscopic transport properties but
just to show that our theory does contain information on
microscopic dissipative mechanisms and thus allows us to
fully determine the spatial dependence of the electrochemical
potential ��r�. For the sake of simplicity, we shall therefore
restrict ourselves to the regime where the current density can
be expressed in a local form �local expressions �73�, �76�,
and �C11�–�C14��. This regime does not correspond to the
lowest temperatures for which the nonlocal nature of the cur-
rent density associated with quantum tunneling becomes pre-
dominant.

It is clear, e.g., from formulas �73� and �76�, that a non-
equilibrium current can be generated in the linear response
and at a uniform temperature by simultaneous density and
electrostatic potential variations. This indicates that in prin-
ciple we can separate the total current into two different con-
tributions. One contribution corresponds to the diffusion cur-
rent �terms involving gradients of the density� whose
physical origin is associated with the tendency of the system
to make the density uniform. The other contribution repre-
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sents the current produced by the electric field which accel-
erates the electrons: it corresponds to electrical conduction
which occurs by definition for a uniform density. The true
driving force for the electrons is finally a combination of
chemical and electrostatic potential differences, i.e., it is
characterized by the variations of the electrochemical poten-
tial � which yield at the macroscopic scale a voltage drop.
Although the roles of the electrostatic and chemical poten-
tials are fundamentally different microscopically, the precise
composition of � is irrelevant in the linear-response regime.
Indeed, the integrated nonequilibrium electrical current can
be seen, e.g., either as resulting entirely from a density-
gradient current or equivalently as being entirely produced
by macroscopic electrostatic variations �note that this equiva-
lence is only valid in the linear response�. In this paper, we
shall adopt the point of view of the conduction mechanism,
i.e., the case where a transport current 	j is only sustained by
electrostatic variations �the electrochemical potential
changes are only identified with the electrostatic potential
changes in the system�.

Any analysis �semiclassical or quantum� of the nonequi-
librium properties where interaction effects are expected to
play a crucial role involves the simultaneous resolution of a
transport equation and of the Poisson equation �in this direc-
tion, see, e.g., Ref. 29�. Since the equilibrium and nonequili-
brum regimes can be described with almost the same expres-
sions, we can first consider at a qualitative level that the
interaction effects in the nonequilibrium case do not differ
substantially from that known in the equilibrium case. The
screening in the compressible regions being almost perfect at
low temperature, we expect a priori that the nonequilibrium
conduction current is principally confined to the incompress-
ible regions where most of the macroscopic electrostatic
variations giving rise to voltage drops can occur �in other
terms, this means that only one type of current—diffusion or
conduction—contributes to a given region in the ideal case
of perfect compressibility and incompressibility�. This aspect
concerning the nonequilibrium conduction current distribu-
tion has already been put forward by different authors.29,30,40

Using Eqs. �73�, �76�, �98�, and �C11�–�C14� and keeping
only the terms that are linear in variations of the electro-
chemical potential � �since we consider the linear response�
and that do not contain derivatives of the Fermi function
factor �we consider the conduction mechanism which in-
volves the whole Fermi sea�, we get at leading order for the
nonequilibrium conduction current,

	j0�r� =
e2

h
�
m=0

+�

nF��m�r���r� � ẑ . �101�

From Eq. �77�, we get a correcting contribution to the non-
equilibrium current 	j which is second order in lB,

	j2�r� =
e2

h
�
m=0

+�

nF��m�r��lB
2	 ��r� · �r�

��c
�rVeff

+
��rVeff · �r�

��c
�r� +

3

2
�m +

1

2
�r�r�
 � ẑ .

�102�

From now on the Fermi factor nF��m�r�� is a functional of

the effective equilibrium potential Veff which differs only
slightly from the bare potential in the incompressible regions
of the system where the screening is ineffective. A smooth
spatial variation of the factor nF��m�r�� exists in these re-
gions as a result of the finite temperature.

Obviously, leading contribution �101� yields local Ohm’s
law which takes the form

	j0�r� = �̂�r�E�r� = �H�r�ẑ � E�r� , �103�

with a local conductivity tensor containing only the trans-
verse Hall component,

�H�r� =
e2

h
�
m=0

+�

nF��m�r�� , �104�

where �m�r�=Em+Veff�r�. Ohm’s law �103� with local Hall
coefficient �104� is already well known and is used in most
of the existing transport theories discussing the integer quan-
tum Hall effect. The absence of diagonal components for the
conductivity tensor in this �semiclassical� limit lB→0 is
rather welcome, since it is compatible with an extremely
small longitudinal resistance as observed when the Hall re-
sistance presents plateaus. However, this absence points out
at the same time an insufficiency of formula �103� to de-
scribe the transition region between the Hall plateaus when
high peaks of the longitudinal �dissipative� magnetoresis-
tance are seen. This insufficiency is, in fact, cured when
considering contribution �102� to the current arising from the
next order terms in the lB expansion, as shown further. At a
general level, we note that our quantum-mechanical deriva-
tion of the transport current justifies on a microscopic basis
the use of phenomenological models assuming a local con-
ductivity tensor28–33,41,42 that have been considered so far to
explain successfully some transport features of the quantum
Hall effect.

To our knowledge the first quantum corrections �Eq.
�102�� to Ohm’s law �103� had not been derived before in the
literature. We find that they contain local corrections �which
give rise to both transverse and diagonal components in the
local conductivity tensor� as well as nonlocal corrections
�terms involving second- and third-order derivatives of ��.
These nonlocal terms can be viewed as fingerprints of the
nonlocal quantum tunneling processes in the considered
semiclassical regime.

C. Spatial dependence of the electrochemical potential

The expansion of the current density in powers of lB has
led us quite naturally to a local continuum description of
current conduction. Within this “classical” picture of trans-
port �our theory is nevertheless developed in a fully
quantum-mechanical framework�, the stationary equation of
continuity ensuring the charge conservation

�r · j = 0, �105�

supplemented by boundary conditions, constrains the spatial
dependence of the electrochemical potential when applied to
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the nonequilibrium current density 	j provided that some
dissipation mechanisms are accounted for within the consid-
ered expressions for 	j �note that Eq. �105� becomes an iden-
tity for the equilibrium current density, as can be easily
checked�.

Inserting the leading contribution 	j0 �Eq. �103�� into Eq.
�105� and using E=−�r�, we get the equation

��r�H � �r�� · ẑ = 0, �106�

which has been thoroughly discussed in the literature.28,31,32

From this equation, it turns out that the electrochemical po-
tential lines and the lines of constant �H must coincide. It is
worth noting that condition �106� is automatically obeyed at
the critical points of �H which correspond also to the critical
points of the density or of the potential Veff. This means that
there still exists a degeneracy in the vicinity of these critical
points, which has to be lifted. Although being small, the
correcting contributions �Eq. �102�� will play this important
role of dictating locally the spatial dependence of ��r�, as
we prove now.

Since we are considering the nonequilibrium current den-
sity in the neighborhood of �rVeff=0, we can first safely
ignore in Eq. �102� the term proportional to �rVeff and which
involves the second-order derivative of �. At a preliminary
stage, we shall also disregard the other nonlocal term �with
the third-order derivative of �� and justify this assumption a
posteriori. Consequently, the second-order contribution to
the current reduces to

	j2�r� �
e2

h
�
m=0

+�

nF��m�r��lB
2 ��r� · �r�

��c
�rVeff � ẑ .

�107�

Combining this Eq. �107� with Eq. �103�, we get local Ohm’s
law with a local conductivity tensor being given by

�̂�r� = �H�r��0 − 1

1 0
��1̂ +

lB
2

��c
Ĥ�Veff��r�� , �108�

where 1̂ is the 2�2 identity matrix and Ĥ is the Hessian

matrix of the function Veff, i.e., we have Ĥ�Veff�ij�r�
=�ij

2 Veff�r�.
We remark that the local conductivity tensor does not

exhibit the usual symmetries, i.e., the Onsager-Casimir
reciprocity relations. For example, we find here that gener-
ally �xx�r�=−�yy�r� and �xy�r��−�yx�r�, whereas the On-
sager relations imply �xx=�yy and �xy =−�yx. In fact, it is
worth noting that the Onsager relations result from finger-
prints of the time-reversal invariance of the microscopic
equations after some averaging procedure �see, e.g., Ref. 39�.
In the present case, we have derived a local conductivity
tensor from the microscopic equations without resorting to
any averaging procedure. Obviously, the local terms involv-
ing the Hessian matrix contribution vanish in the volume
average; the Onsager relations are then restored. This indi-
cates that the Hessian matrix terms can be interpreted as a

result of local fluctuations only. Let us also emphasize that
current �107� purely stems from Landau level mixing pro-
cesses. The found sign difference between the two local di-
agonal components which appears as rather unexpected and
unconventional could be seen as a reminiscence of the anti-
symmetry imposed by the Lorentz force, antisymmetry
which is usually only exhibited by the Hall components �see
the conductivity tensor at leading order�. Anyway, we shall
show in the following that the precise form we have found
for the local conductivity tensor leads to reliable physical
results.

Inserting second-order contribution �107� into the conti-
nuity equation �Eq. �105��, condition �106� is now replaced
by the differential equation,

��r�H � �r�� · ẑ −
lB
2

��c
�H Tr��0 − 1

1 0
�Ĥ�Veff�Ĥ����

= 0, �109�

where the notation Tr means the trace. In the neighborhood
of a critical point, which for practical convenience is taken at
the origin �x=y=0�, we have

�r�H�r� � �r · �r��r�H�0. �110�

The Hessian matrices of the function �H�r� and of the func-
tion Veff�r� being proportional at the critical point, we can
choose, without loss of generality according to the form of
Eq. �109�, the x̂ and ŷ axes such that both Hessian matrices
are diagonal. This means, e.g., that Veff�r� is expanded close
to the origin as

Veff�r� = Veff�0� + a
x2

2
+ b

y2

2
, �111�

where a=�xx
2 Veff �0 and b=�yy

2 Veff �0. For this situation, Eq.
�109� becomes then

�a − b��xy
2 � +

1

�2 �ax�y� − by�x�� = 0, �112�

with

�2 = lB
2

�
m=0

+�

nF��m�0��

�
m=0

+�

��c�− nF���m�0���

. �113�

To get rid of coefficients a and b in the differential equation
�Eq. �112��, it is useful to introduce the change in variables,

x� = �x − �y , �114�

y� = �x + �y . �115�

If the critical point corresponds to a local extremum �situa-
tion with ab�0�, we can take
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� =�� a

a − b
�, � =�� b

a − b
� , �116�

and Eq. �112� then reduces to

�y�y�
2

� − �x�x�
2

� +
�

�2 �x��y�� − y��x��� = 0, �117�

where �= +1 if �a�� �b� and �=−1 if �a�� �b�. The general
solution of Eq. �117� is

��x�,y�� = �A + Be−�x�y�/�2
��C + D�x�2 + y�2�� , �118�

where the coefficients A, B, C, and D are constants of inte-
gration. As boundary conditions, we require that the electro-
chemical potential tends to constant values far from the criti-
cal point. We therefore necessarily get D=B=0. There is
consequently no macroscopic voltage drop associated with
the crossing of a local extremum �the special case a=b�0,
which can be readily obtained from Eq. �112� leads to the
same result�.

Now, if the critical point corresponds to a saddle-point
�situation with ab�0�, we can choose

� =� a

a − b
, � =� b

b − a
, �119�

so that Eq. �112� becomes

�y�y�
2

� − �x�x�
2

� +
1

�2 �y��y�� − x��x��� = 0. �120�

Looking for a solution with separable spatial dependences,
we find that the only solution of Eq. �120� represents the
product of two error step functions in the x� and y� direc-
tions,

��x�,y�� = 	A + B erf� x�
�2�

�
	C + D erf� y�
�2�

�
 ,

�121�

where

erf�x� =
2

��
�

0

x

e−t2dt . �122�

We observe with solution �121� that far from the saddle point
the electrochemical potential tends to different constant val-
ues depending on sectors. This solution is consistent with the
picture of four different regions characterized by four differ-
ent electrochemical potential values with an electrochemical
drop resulting from the saddle-point crossing, which is a ma-
jor ingredient in the network models that have been devel-
oped to describe the peaks of the longitudinal conductance in
the transition regime between quantized Hall plateaus �see,
e.g., Ref. 41�. Thus, our conductivity tensor confirms at a
microscopic level the special role played by the saddle points
of the density in the dissipative features.17,28,37,41,43,44

Finally, we turn back to the condition of validity of Eq.
�109� which has been established under the assumption that

the nonlocal term in Eq. �102� involving the third-order de-
rivatives of � plays a negligible role. Clearly, this is justified
provided that � is smooth enough. Considering expression
�113� giving the characteristic length scale � for the spatial
variations of the electrochemical potential, we note that this
assumption appears fully justified as long as the function
nF���m�0�� remains quite small, i.e., as long as the saddle-
point filling factor is close to an integer. Conversely, we can
conclude that the nonlocal term which is associated with
quantum tunneling becomes non-negligible at low tempera-
tures when the local chemical potential ��0�=��−Veff�0� ap-
proaches a Landau level. This regime which occurs for a
narrow range in magnetic fields will be investigated in detail
elsewhere.

VII. CONCLUSION AND PERSPECTIVES

A. Summary

In summary, we have developed a systematic high
magnetic-field expansion, which permits to find in a recur-
sive way, order by order in powers of the magnetic length lB,
Green’s functions for the quantum problem of an electron
confined to a plane and subjected to a slowly varying poten-
tial in high magnetic fields. Using this theory, we have de-
rived functional quantum expressions for the local equilib-
rium density distribution and current density at the first two
leading orders. These expressions which contain Landau
level mixing processes in a controlled way and quantum
smearing effects associated with the finite extent of the wave
function at finite magnetic fields form the starting point for
future quantitative investigations of screening effects at low
temperatures in two-dimensional disordered Hall liquids. We
have checked the accuracy of our general functionals against
the exact solution of a one-dimensional parabolic confining
potential, demonstrating the controlled character of the
theory to get equilibrium properties. Furthermore, we have
shown that our technique gives a natural and systematic ac-
cess to semiclassical expansions in powers of the magnetic
length of the physical observables. For example, we have
been able to derive the semiclassical corrections of order lB

2

for the local charge and current densities.
Moreover, we have proved microscopically that in high

magnetic fields the electronic system can be described within
a local hydrodynamic regime and that the electrical conduc-
tion transport takes a quasilocal form. As an important result,
we have put forward that our approximation scheme with the
lB expansion intrinsically captures dissipation mechanisms at
the microscopic level and accounts for quantum tunneling
processes. For example, we have derived microscopic ex-
pressions for the local conductivity tensor, which contains
both Hall and longitudinal components, the dissipative fea-
tures appearing at the order lB

2 , i.e., at finite magnetic fields.
Furthermore, we have established from the special form of
this local conductivity tensor that a nonzero gradient of the
electrochemical potential is exclusively generated by the
saddle points of the density distribution. A general under-
standing of the transport properties at the microscopic level
now seems accessible. However, the procedure of computa-
tion of the macroscopic transport coefficients, and in particu-
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lar the treatment of nonlocal effects induced by quantum
tunneling, requires additional work that is currently under-
way.

B. General perspective

Finally, we want to address a more general perspective,
which is beyond the quantum Hall effect, namely, the issue
of dissipation in physics and especially in quantum mechan-
ics. Indeed, we believe that our systematic expansion in as-
cending powers of the magnetic length could shed light on
this important issue by illustrating how the irreversible evo-
lution of a quantum system can emerge from the consider-
ation of microscopic equations which are time-reversal in-
variant. The system considered in this paper is maybe the
simplest system one can consider to answer the latter ques-
tion, since it involves only 2 degrees of freedom. Interest-
ingly, the magnetic field �which plays the role of a tuning
parameter here� controls the degree of mixing between these
2 degrees of freedom, which corresponds at the classical
level to the cyclotron motion and the guiding-center motion.
In high magnetic fields and for a smooth arbitrary potential,
this mixing becomes very weak as a result of the strongly
different time scales associated with the two kinds of motion.
The system even becomes dynamically integrable in the
strict limit of infinite magnetic fields when the mixing be-
tween the 2 degrees of freedom is no more possible. There-
fore, the high but finite magnetic-field regime can be associ-
ated with a classical regime of soft chaos. At the quantum-
mechanical level, it is clear that the quantization of the
kinetic orbital motion which introduces robustness �in the
sense that it considerably constrains the possible variations
of the orbital motion� renders this exchange between the 2
degrees of freedom even much more ineffective. We thus
expect that the quantum system is somehow even closer to
integrability than the classical one.

In classical chaotic systems �this is, for example, the case
for the present disordered system in low magnetic fields�,
irreversibility and dissipation are often associated with the
technical impossibility to fully describe the trajectories as a
result of complicated mixing mechanisms between the de-
grees of freedom. This complexity is then transposed in
terms of a stochastic description, thus expressing a loss
of information. We have shown that in high magnetic fields
it is not required to average over the disorder configuration
in order to find an analytical approximate solution to the
quantum problem, contrary to the situation at low magnetic
fields. Moreover, we have noticed that time irreversibility
has nevertheless been introduced at some stage of the deri-
vation, since our high magnetic-field theory accounts for
dissipation features related to time-decaying states. It turns
out from first considerations that the dissipation involves
Landau level mixing processes and arises from the conjunc-
tion of local quantum fluctuations with a local dynamical
instability taking place at the saddle points of the local equi-
librium density �a saddle point is necessarily characterized
by stable and unstable directions which can be defined in an
obvious manner�. Interestingly, in low magnetic fields the
electrical conduction is also directly related to another insta-

bility mechanism which is realized by the sensitivity to the
initial condition characterizing the chaotic systems. In brief,
insights in this general perspective of understanding the
emergence of dissipation in quantum-mechanical systems
could be gained from closer investigations of the high
magnetic-field expansion developed in the present work.
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APPENDIX A: OFF-DIAGONAL ELEMENTS OF THIRD-
ORDER GREEN’S FUNCTIONS

In this Appendix, we provide the detail for the derivation
of the elements 	m1,m2
1 of third-order Green’s function g�3�,
which are needed for the computation of the second-order
current density performed in Sec. IV and Appendix C. The
function g�3� obeys the equation

�m1
gm1;m2

�3� �R� = vm1;m2

�3� �R�gm2;m2

�0� �R� + �
m3

�vm1;m3

�2� �R�gm3;m2

�1� �R�

+ vm1;m3

�1� �R�gm3;m2

�2� �R�� + ��X − i�Y�V�R�

���X + i�Y�gm1;m2

�1� �R� + ��X − i�Y�vm1;m2

�1� �R�

���X + i�Y�gm2;m2

�0� �R� . �A1�

Here is a list of these numerous components 	m1,m2
1 of
gm1;m2

�3� �R� arising �i� from the combination v�3�g�0�,

1

2�m1
�m2

��m1 + 1��m1	m1,m2+1��X − i�Y�

+ �m2 + 1��m2	m1+1,m2
��X + i�Y��V , �A2�

�ii� from the combination v�2�g�1�,

m1 + 1

�m1

2 �m2

RV��m1	m1,m2+1��X − i�Y�

+ �m2	m1+1,m2
��X + i�Y��V

+
m2

�m1

2�m2−1�m2
�m2+1

	m1,m2+1���X − i�Y�2V���X + i�Y�V

+
�m2 + 1��m2

2�m2−1�m2
�m2+1

	m1+1,m2
���X + i�Y�2V���X − i�Y�V ,

�A3�

�iii� from the combination v�1�g�2�,
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m2 + 1

�m1
�m2

2 RV��m1	m1,m2+1��X − i�Y� + �m2	m1+1,m2
��X + i�Y��V + 	m2 + 1

�m2+1
+

m2

�m2−1
+

1

�m2


 ��RV�2

�m2

2 �m1

���m1	m1,m2+1��X − i�Y� + �m2	m1+1,m2
��X + i�Y��V +

m1
�m2

2�m1−1�m1
�m1+1

	m1+1,m2
���X − i�Y�V����X + i�Y�2V�

+
�m1 + 1��m1

2�m1−1�m1
�m1+1

	m1,m2+1���X + i�Y�V����X − i�Y�2V� +
m1

�m2

�m1−1�m1

2 �m1+1

	m1+1,m2
���X − i�Y�V����X + i�Y�V�2

+
�m1 + 1��m1

�m1−1�m1

2 �m1+1

	m1,m2+1���X + i�Y�V����X − i�Y�V�2, �A4�

and �iv� from the combinations ��X− i�Y�v��X+ i�Y�g,

��RV�2	 1

�m1

3 �m2

+
1

�m1

2 �m2

2 
��m1��X − i�Y�	m1,m2+1 + �m2��X + i�Y�	m1+1,m2
�V +

RV

�m1
�m2

	�m1

�m1

��X − i�Y�	m1,m2+1

+
�m2

�m2

��X + i�Y�	m1+1,m2
V +
�m1

�m1
�m2

2 	m1,m2+1���X − i�Y�2V����X + i�Y�V� +
�m2

�m1

2 �m2

	m1+1,m2
���X + i�Y�2V����X − i�Y�V� .

�A5�

Regrouping the terms of the same form, different contributions �A2�–�A5� to the components 	m1,m2
1 of g�3� are rearranged as
�i� terms with R��X
 i�Y�V,

1

2
R��m1 + 1��m1	m1,m2+1��X − i�Y� + �m2 + 1��m2	m1+1,m2

��X + i�Y��V/�m1
�m2

, �A6�

�ii� terms with RV��X
 i�Y�V,

RV	 m2 + 1

�m1
�m2

2 +
m1 + 1

�m2
�m1

2 
��m1	m1,m2+1��X − i�Y� + �m2	m1+1,m2
��X + i�Y��V +

RV

�m1
�m2

	�m1

�m1

��X − i�Y�	m1,m2+1

+
�m2

�m2

��X + i�Y�	m1+1,m2
V , �A7�

�iii� terms with ���X
 i�Y�2V���X� i�Y�V,

1

2�	 m2

�m2−1�m2
�m2+1

+
m1 + 1

�m1−1�m1
�m1+1

+
2

�m1
�m2

2 
�m1	m1,m2+1���X − i�Y�2V����X + i�Y�V�

+ 	 m1

�m1−1�m1
�m1+1

+
m2 + 1

�m2−1�m2
�m2+1

+
2

�m1

2 �m2


�m2	m1+1,m2
���X + i�Y�2V����X − i�Y�V�� , �A8�

and �iv� terms with ��RV�2��X
 i�Y�V,

��RV�2

�m1
�m2

�	 m1 + 1

�m1
�m1+1

+
m2

�m2−1�m2

+
m1 + 1

�m1
�m2

+
1

�m1

2 +
1

�m2

2 
�m1	m1,m2+1���X − i�Y�V�

+ 	 m2 + 1

�m2
�m2+1

+
m1

�m1−1�m1

+
m2 + 1

�m1
�m2

+
1

�m1

2 +
1

�m2

2 
�m2	m1+1,m2
���X + i�Y�V�� . �A9�
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APPENDIX B: PROOF OF USEFUL RELATIONS

In this appendix we prove identities �54�, �C1�, and �C2�.
First, with the help of Eq. �69� we can find that

��x − i�y���p,R�r��2 =
�2

lB
��p�p,R

� �r��p−1,R�r�

− �p + 1�p+1,R
� �r��p,R�r�� , �B1�

which defines in a recursive way the combination
�p+1�p+1,R

� �r��p,R�r�. From this relation �B1�, it is then
straightforward to obtain identity �54�.

Using Eq. �69�, it can be readily established that

��x − i�y���m,R�r��m+1,R
� �r�� =

�2

lB
��m�m−1,R�r��m+1,R

� �r�

− �m + 2�m,R�r��m+2,R
� �r�� .

�B2�

From this relation �B2�, we deduce that

�m + 2�m+2,R
� �r��m,R�r� = �m�m+1,R

� �r��m−1,R�r�

−
lB

�2
��x − i�y�

���m+1,R
� �r��m,R�r�� . �B3�

Multiplying Eq. �B3� by �m+1, we get a recursive relation
which yields

�m + 1�m + 2�m+2,R
� �r��m,R�r�

= −
lB

�2
��x − i�y��

p=0

m

�p + 1�p+1,R
� �r��p,R�r� . �B4�

Finally, using identity �54�, we get the result �Eq. �C1��.
From Eq. �69�, we can get

r��p,R�r��2 =
2

lB
2 ��p + 1���p+1,R�r��2 + p��p−1,R�r��2

− �2p + 1���p,R�r��2� . �B5�

Therefore, we can write

�
p=0

m

�m + 1 − p�r��p,R�r��2 =
2

lB
2 �

p=0

m

�m + 1 − p���p + 1�

���p+1,R�r��2 + p��p−1,R�r��2

− �2p + 1���p,R�r��2�

=
2

lB
2 ��m + 1���m+1,R�r��2

− �
p=0

m

��p,R�r��2� , �B6�

which proves identity �C2�.

APPENDIX C: CALCULATION OF THE ELECTRONIC
CURRENT AT ORDER lB

2

In this appendix we present the detailed derivation of the
quantum �Appendix C 1� and semiclassical �Appendix C 2�
expressions for the electronic current density up to order lB

2 .

1. Quantum expressions for the current

a. Contribution from g(1)

First-order vortex Green’s function has the total contribu-
tion to the current given by formula �74�, from which the
leading-order term was extracted in Eq. �75�. We express
here formula �74� in a form that makes explicit its leading
and subdominant contributions. Using the identities proven
in Appendix B

�m + 1�m + 2�m+2,R
� �r��m,R�r� = 	−

lB

�2
��x − i�y�
2

��
p=0

m

�m + 1 − p���p,R�r��2, �C1�

lB
2

2
r�

p=0

m

�m + 1 − p���p,R�r��2 = �m + 1���m+1,R�r��2

− �
p=0

m

��p,R�r��2, �C2�

we can rewrite the combination �m,R�r��m+2,R
� �r� of vortex

wave functions appearing in Eq. �74� in the following way:

�m + 1�m + 2�Im

Re
���XV + i�YV��m,R�r��m+2,R

� �r�

= lB
2 ẑ � ��RV · �r��r�

p=0

m

�m + 1 − p���p,R�r��2

+ ẑ � �RV��
p=0

m

��p,R�r��2 − �m + 1���m+1,R�r��2� .

�C3�

Inserting expressions �55� and �C3� in Eq. �74�, we then ex-
press the current density as

j�1��r� =
e�

m�� d2R

2�lB
2 �

m=0

+�
nF��m+1�R�� − nF��m�R��

��c

���
p=0

m

��p,R�r��2ẑ � �RV�R�

+ lB
2 ẑ� ��RV�R� · �r��r�

p=0

m

�m + 1/2 − p���p,R�r��2� ,

�C4�

where we have used
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�r��RV · �r��p,R�r��2� = ��RV · �r��r���p,R�r��2� .

�C5�

After a straightforward simplification of expression �C4�, the
current density j�1� can finally be divided into a leading con-
tribution given by Eq. �75� and a subdominant contribution
which reads

jsub
�1� �r� =

e

h
� d2R�

m=0

+�

nF��m�R��lB
2

���RV�R� ·�r��r��
p=0

m

��p,R�r��2 −
��m,R�r��2

2
�� ẑ .

�C6�

b. Contribution from g(2)

Second-order vortex Green’s function �35� contains diag-
onal elements �m=m��, which contribute within the first and
second terms in the right-hand side of Eq. �71�. It has also

off-diagonal elements 	m,m�
2, which combine with the sec-
ond term of the right-hand side of Eq. �71�, to give terms
involving wave functions with adjacent Landau levels �wave
functions with a Landau index difference of 3 are also ob-
tained, but these contribute to the current at order lB

4 and will
be discarded�. After inspection, the contribution from the
function g�0� appearing with the term k=1 in Eq. �71� com-
bines very naturally with these terms from g�2�, so that the
starting expression reads

j�2��r� =
e�

2m�
ẑ � �r�

�2��r� +
e�

m�� d�

2�
� d2R

2�lB
2 �

m=0

+�
lB

�2
�m + 1

��Re

Im
���m+2,R

� �r��m+1,R�r�gm;m+2
�2�� �R,��

+ �m+1,R�r��m,R
� �r��gm;m

�2���R,�� − Rgm;m
�0���R,���� .

�C7�

After using Eqs. �54� and �58� and performing the remaining
energy integration, we can rewrite expression �C7� as

j�2��r� =
e

h
� d2R�

m=0

+�
lB
2

2 �	nF���m�R��	mRV −
��RV�2

��c

 − nF���m�R��

��RV�2

2
+

��RV�2

���c�2 �mnF��m−1�R�� + �m + 1�nF��m+1�R��

− �2m + 1�nF��m�R���
��c�r	�
p=0

m

��p,R�r��2 −
��m,R�r��2

2 
 + �m + 1���nF��m+2�R�� + nF��m�R�� − 2nF��m+1�R���

�	�RV��RV · �r�
��c

−
��RV�2

2��c
�r
 + �nF��m+2�R�� − nF��m�R���	 ��r · �R��RV

2
−

V

4
�r
��

p=0

m+1

��p,R�r��2� � ẑ .�C8�

c. Contribution from g(3)

Finally, there exist second-order contributions to the current density coming from the elements of third-order Green’s
function g�3� which couple adjacent Landau levels �this contribution arises from the second term in the right-hand side of Eq.
�71��. Similar to the previous calculation, these recombine nicely with the contribution from the function g�1� associated with
the term k=1 in Eq. �71�. Our starting expression thus reads

j�3��r� =
e�

m�� d�

2�
� d2R

2�lB
2 �

m=0

+�
lB
2

2
�m��m,R�r��2�Im

Re
��iRgm;m−1

�1�� �R,�� − igm;m−1
�3�� �R,��� . �C9�

Inserting the explicit expressions for the first- and third-order Green’s functions �expressions �31� and �A6�–�A9�� and per-
forming the integration over the energy �, we finally find after tedious calculations,

j�3��r� =
e

h
ẑ �� d2R�

m=0

+�
lB
2

2
m��m,R�r��2�m + 1

2
�nF��m�R�� − nF��m−1�R���R�RV + 	�m + 2�nF���m�R�� − mnF���m−1�R��

+
2

��c
�nF��m−1�R�� − nF��m�R���
RV�RV + ��nF��m−1�R�� − nF��m�R����RV� +

1

4��c
�RV�RV − �R���RV�2��

� �4��cnF���m−1�R�� + �m + 1��nF��m−1�R�� − nF��m+1�R���

+ �m − 1��nF��m�R�� − nF��m−2�R���� + ��m + 1�nF��m+1�R�� − �m − 1�nF��m−2�R�� + �3m − 1�nF��m−1�R��

− �3m + 1�nF��m�R�� + ���c�2�nF���m�R�� − nF���m−1�R��� + 2��c�nF���m−1�R�� − nF���m�R����
��RV�2�RV

2���c�2 � . �C10�
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2. Semiclassical expressions for the current

The second-order contributions involve several terms according to their different possible origins. A first term comes with
the expansion of the density-gradient contribution j�0� �Eq. �72��,

j�0��r� =
e

h

lB
2

2 �
m=0

+�
�m + 1�2

2
��cr�r�nF��m�r��� � ẑ , �C11�

where we have used Eq. �60�. After making two integration by parts and using Eq. �60�, the second-order term for the current
density arising from Green’s function g�1� �Eqs. �75� and �C6�� takes the form

j�1��r� =
e

h

lB
2

2 �
m=0

+�

�3m + 2�r�nF��m�r���rV� � ẑ . �C12�

Second-order terms brought by the contribution j�2� are written as

j�2��r� =
e

h

lB
2

2 �
m=0

+� ��m +
1

2
���c�r	nF���m�r���mrV −

��rV�2

��c
� − nF���m�r��

��rV�2

2

 � ẑ +

2

��c
�nF��m�r����rV · �r��rV

+ ��r · �nF��m�r���rV���rV� � ẑ + �m +
1

2
��rV�rnF��m�r�� − nF��m�r��r�rV − 2��rnF��m�r�� · �r��rV� � ẑ� .

�C13�

Finally, the terms originating from the contribution j�3� yield the following second-order correction to the current density,

j�3��r� =
e

h

lB
2

2 �
m=0

+�

ẑ � ��m + 1�nF���m�r���rV�rV − �r���rV�2�� + � 2

��c
nF��m�r�� − nF���m�r���rV�rV

+ �nF���m�r��
��c

−
nF���m�r��

2
���rV�2�rV − �m + 1�nF��m�r��r�rV + r�nF��m�r���rV�� . �C14�
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